亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频

Search for the product you are looking for
研發(fā)中心

News

Slide down

Guidelines for Selecting Humidity Test Methods in High-Low Temperature Cyclic Humidity Chambers —A Systematic Decision Based on Specimen Characteristics and Failure Mechanisms

Source:LINPIN Time:2025-09-25 Category:Industry News

In generic reliability standards such as GB/T 2423, IEC 60068 and MIL-STD-810, “damp heat” is treated as an independent climatic stress. The goal is not merely to verify moisture resistance, but to accelerate and expose failure modes triggered by water adsorption, condensation, “breathing” and electrochemical migration. Although a high-low temperature cyclic humidity chamber (hereafter “the chamber”) can deliver both steady-state and cyclic profiles, an ill-chosen method may either inflate test costs through over-testing or misalign failure mechanisms and distort field-failure predictions. This paper reviews the physics, acceleration factors and applicability boundaries of Steady-state Damp Heat (SSDH) and Cyclic Damp Heat (CDH) from an engineering perspective, and provides actionable selection rules for R&D, test and quality engineers.

Physical Models and Acceleration Mechanisms
2.1 Steady-state Damp Heat (SSDH)
Stress signature: constant temperature and humidity (e.g. 40 °C/93 %RH, 85 °C/85 %RH).
Mass-transfer path: three-stage “adsorption–diffusion–equilibrium”; equilibrium moisture content follows Henry’s adsorption isotherm.
Dominant failures:
a) Dielectric constant and loss tangent of insulators increase → breakdown voltage drops.
b) Electrochemical migration (ECM) on metallisation or PCB copper → dendritic short.
c) Glass-transition temperature of rubbers and sealants decreases → permanent compression set.
Acceleration model: Arrhenius–Peck
AF = exp[(Ea/k)(1/Tuse?1/Ttest)] × (RHtest/RHuse)^n
where n = 2–3, Ea = activation energy (eV), k = Boltzmann constant.
2.2 Cyclic Damp Heat (CDH)
Stress signature: 24-h cycles of “heat-up – high T/RH – cool-down – low T/high RH”, e.g. 25 → 55 → 25 °C at ≥ 95 %RH; forced condensation during ramps.
Mass-transfer path: pressure differential drives “breathing”; vapour condenses on internal surfaces during cool-down and re-evaporates during heat-up, producing repeated liquid/vapour phase change.
Dominant failures:
a) Aluminium wire corrosion inside sealed relays/IC packages → open circuit.
b) Delamination at coating–metal or potting–substrate interfaces → capillary channels.
c) Micro-cracks in fibre-reinforced composites due to differential swelling/shrinkage.
Acceleration metric: number of condensation events; empirically one condensation ≈ 8–12 h SSDH corrosion increment.
Specimen Taxonomy vs. Test Method
3.1 By architecture
Class A – Solid homogeneous dielectrics (phenolic rods, ceramic substrates, potted transformers).
Mass transfer: surface adsorption only, no breathing space.
Recommendation: SSDH; lifetime can be quantified directly with Peck model.
Class B – Cavity/sealed enclosures (IP67 controllers, MIL connectors, PV junction boxes).
Mass transfer: significant breathing; repeated internal condensation.
Recommendation: CDH, optionally with sub-cycles down to ?10 °C or ?40 °C to amplify thermal mismatch.
Class C – Surface coating systems (automotive sensor plating, conformal coatings).
If the concern is bulk moisture resistance of the coating itself → SSDH.
If the concern is coating–metal interface blistering → CDH.
3.2 By moisture-ingress mechanism
Adsorption/diffusion-controlled (polymers): failure driver = volume resistivity drop.
Criterion: moisture uptake < 0.5 % at 23 °C/50 %RH equilibrium → SSDH.
Breathing/condensation-controlled (sealed cavities): failure driver = internal corrosion.
Criterion: internal volume ≥ 5 cm3 and sealing ≤ IP65 → CDH.
Industrial Case Studies
4.1 New-energy vehicle OBC
Construction: die-cast Al housing, internal potting, power device on thermal pad.
Field failure: DC-DC transformer core rust → audible noise.
Root cause: thermal pad and Al housing form micro-gap; diurnal temperature swing induces breathing.
Test comparison:
SSDH 85 °C/85 %RH, 1000 h – no failure.
CDH 55 °C/95 %RH ? 25 °C/95 %RH, 10 cycles – red rust visible on core.
Conclusion: CDH reproduces field failure within two weeks, cutting validation time by 60 %.
4.2 5G AAU antenna radome
Material: glass-fibre reinforced polyurethane, UV-resistant top-coat.
Failure mode: wave transmittance drop after damp heat → VSWR alarm.
Mechanism: moisture diffusion raises resin permittivity; CDH-induced micro-cracks increase scattering.
Selected profile: IEC 60068-2-30 CDH (55 ? 25 °C, 6 cycles) plus 2 h UV sub-cycle; deviation vs. one-year Hainan outdoor exposure < 8 %. Decision Tree Step 1 – Sealing assessment If IP ≥ X7 and cavity ≥ 5 cm3 → CDH branch; Else → SSDH branch. Step 2 – Dominant failure mechanism Insulation degradation → SSDH; Corrosion/delamination → CDH. Step 3 – Field environment Diurnal ΔT ≥ 20 °C and RH > 85 % → CDH;
Long-term steady high humidity (e.g. indoor tropics) → SSDH.
Step 4 – Lifetime model requirement
Quantitative MTBF required → SSDH (Peck model mature);
Pass/fail needed quickly → CDH faster.
Test Parameter Essentials
6.1 SSDH
T tolerance: ±2 °C; RH tolerance: ±3 %RH.
Air speed: 0.5–1.0 m/s to avoid stagnant boundary layer.
Intermediate read-outs: 168 h, 500 h, 1000 h; 2 h recovery at 25 °C/50 %RH before insulation-resistance test.
6.2 CDH
Ramp rate: 0.5–1 °C/min to ensure sufficient pressure differential.
Condensation control: raise absolute humidity or light fog during heat-up; droplet diameter on inner wall ≥ 2 mm.
Low-temperature dwell: extend to ?10 °C or ?40 °C for 1 h if product claims low-T operation.
Cycle count: 10 for automotive, 21 for rail/military applications.
Common Pitfalls
Pitfall 1: “CDH is always more severe and can replace SSDH.”
Correction: CDH works for sealed systems; for solid dielectrics it may add irrelevant thermal-cycle fatigue and cause over-test.
Pitfall 2: “Raising RH to 98 %RH shortens time further.”
Correction: RH > 95 %RH produces free water droplets that drip on specimens, creating local over-corrosion inconsistent with field conditions and unsuitable for modelling.
Pitfall 3: “Any condensation seen equals valid test.”
Correction: Condensation on chamber wall ≠ specimen breathing; confirm with viewing window or borescope that droplets form on the specimen/internal surfaces.
Closing Remarks
Humidity testing uses the polar water molecule as a catalyst to replicate, in a compressed time frame, corrosion, ageing and electrical drift that a product may encounter during its life. SSDH and CDH are not merely ranked by “severity”; they address two distinct mass-transfer and failure routes. Only by combining specimen architecture, sealing level, material polarity and field conditions with quantitative acceleration models can a scientific, economical and traceable choice be made. It is recommended that a DFR (Design for Reliability) team be engaged at the test-plan review stage to simulate sealing topology, moisture-sorption curves and critical failure modes, thereby reducing physical test iterations and R&D cost. For assistance in profile tailoring, lifetime extrapolation or failure analysis, joint validation with chamber manufacturers or third-party reliability laboratories is encouraged to ensure high homology between test data and field failures.

News Recommendation
When using a high-low temperature alternating damp heat test chamber, the appropriate damp heat test method should be selected based on the material characteristics and testing requirements.
The composite salt spray test chamber breaks through the limitations of traditional constant-value tests. By cycling through salt spray, drying, and humidity-heat conditions, it accurately simulates the outdoor corrosion environment.
As a large, high-precision environmental simulation testing instrument, the salt spray test chamber requires careful attention during installation to ensure its proper operation and accurate testing.
If a constant temperature and humidity test chamber malfunctions due to improper operation or lack of maintenance, it will not only affect the progress of work but also incur costs much higher than those of regular maintenance.
Analysis of Fault Alarm Principles in Constant Temperature and Humidity Chambers
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频
国产乱肥老妇国产一区二 | 欧美国产日本在线| 欧美成人免费全部观看天天性色| 欧美大片在线影院| 欧美日本在线| 国产精品一二三| 欲香欲色天天天综合和网| 亚洲精品国精品久久99热| 在线视频亚洲一区| 欧美一区二区三区婷婷月色 | 一区二区三区国产精品| 麻豆av一区二区三区久久| 欧美精品v日韩精品v国产精品| 欧美日韩视频在线一区二区观看视频| 国产精品久久久999| 国产日韩欧美高清免费| 91久久精品国产91久久| 亚洲欧美国产精品专区久久| 久久午夜av| 欧美日韩第一页| 国内不卡一区二区三区| 亚洲精品在线视频| 欧美一区二区三区视频免费播放| 欧美激情麻豆| 国产日韩精品在线观看| 亚洲国产专区| 亚洲一区二区在线看| 久热精品视频在线观看一区| 欧美日韩综合在线| 伊人成人在线| 亚洲自拍偷拍视频| 欧美福利在线| 国产亚洲精品综合一区91| 一本色道综合亚洲| 久久先锋资源| 国产精品视频你懂的| 最新日韩av| 久久蜜臀精品av| 国产精品激情偷乱一区二区∴| 影音先锋欧美精品| 亚洲欧美一区二区三区极速播放| 免费日韩av电影| 国产亚洲高清视频| 亚洲视频网站在线观看| 欧美成人按摩| 黄色成人免费观看| 亚洲免费小视频| 欧美区亚洲区| 亚洲国产成人精品久久| 久久aⅴ国产紧身牛仔裤| 欧美午夜精品久久久久久孕妇| 亚洲第一页中文字幕| 欧美在线视频日韩| 国产精品露脸自拍| 夜夜爽av福利精品导航| 久久综合影视| 国内精品久久久久影院薰衣草| 亚洲欧美网站| 国产精品日韩| 亚洲午夜国产一区99re久久 | 国产一区在线视频| 亚洲欧美一区在线| 国产精品a久久久久久| 亚洲精品一区二区三区福利| 久久亚洲春色中文字幕| 国产亚洲欧洲一区高清在线观看| 亚洲国产小视频在线观看| 久久精品视频网| 国产午夜精品在线| 亚洲综合精品一区二区| 国产精品福利av| 一道本一区二区| 欧美精品一区二区久久婷婷| 亚洲国产精品免费| 麻豆精品国产91久久久久久| 精品盗摄一区二区三区| 久久另类ts人妖一区二区| 国产亚洲一区精品| 久久成人18免费观看| 国产亚洲精久久久久久| 欧美一级在线亚洲天堂| 国产欧美一区二区在线观看| 欧美一区二区视频97| 国产日韩欧美在线播放| 欧美一区二区啪啪| 国产一区999| 久久天堂国产精品| 亚洲国产导航| 欧美激情一区二区三区蜜桃视频 | 亚洲欧洲精品一区二区精品久久久| 裸体丰满少妇做受久久99精品| 一区二区三区自拍| 麻豆精品一区二区av白丝在线| 在线观看中文字幕不卡| 欧美a级理论片| 亚洲麻豆视频| 亚洲在线视频| 国产欧美日韩综合精品二区| 欧美在线播放一区| 在线播放中文一区| 欧美精品一区二区三区蜜臀| 9人人澡人人爽人人精品| 欧美午夜视频网站| 欧美一区不卡| 精品51国产黑色丝袜高跟鞋| 免费亚洲电影| av成人老司机| 国产精品综合| 久久一区二区视频| 亚洲日本中文| 国产精品久久一区二区三区| 欧美一区二区三区四区在线观看| 激情欧美日韩| 欧美激情一区二区三级高清视频| 一区二区三区四区五区精品视频| 国产精品久久婷婷六月丁香| 久久久精品一区| 亚洲精品一区二区网址| 国产精品久久久久久久久| 欧美一二三区在线观看| 极品少妇一区二区三区| 欧美美女喷水视频| 亚洲女同同性videoxma| 一区二区在线看| 欧美日韩免费观看一区=区三区| 亚洲性感美女99在线| 国内精品久久久久久久影视蜜臀 | 亚洲精品黄色| 国产精品视频久久久| 久久午夜影视| 日韩午夜一区| 国产午夜亚洲精品羞羞网站| 欧美成熟视频| 午夜精品一区二区三区在线| 亚洲第一网站| 国产精品理论片| 蜜臀99久久精品久久久久久软件 | 久久久中精品2020中文| 日韩午夜激情| 国产一区视频在线观看免费| 欧美精品导航| 欧美在线视频播放| 亚洲免费精彩视频| 国产午夜精品一区二区三区欧美 | 亚洲美女啪啪| 国产视频久久久久| 欧美日韩精品国产| 久久久久久久久久久久久女国产乱| 亚洲另类在线视频| 国内精品视频久久| 欧美色精品天天在线观看视频| 久久国产免费| 亚洲午夜av电影| 亚洲人成在线播放网站岛国| 国产欧美日韩在线播放| 欧美日本三级| 久久综合网hezyo| 性欧美在线看片a免费观看| 亚洲精品视频一区二区三区| 国产综合香蕉五月婷在线| 欧美揉bbbbb揉bbbbb| 免费在线观看精品| 欧美一区二区三区日韩| 一区二区三区国产精华| 亚洲国产精品高清久久久| 国产一区二区精品久久99| 国产精品大片| 欧美日本在线播放| 久久这里只有精品视频首页| 校园激情久久| 亚洲一区二区三区视频播放| 亚洲精品日本| 亚洲第一在线| 经典三级久久| 国产真实精品久久二三区| 国产精品久久久久高潮| 欧美日韩不卡一区| 欧美成人精品不卡视频在线观看 | 国产精品久久久久久久午夜片| 欧美国产免费| 美女任你摸久久| 久久久久久欧美| 久久大综合网| 香蕉国产精品偷在线观看不卡 | 午夜一区二区三区在线观看| 一区二区三区精品| 亚洲美女av黄| 亚洲三级影院| 欧美高清不卡| 麻豆freexxxx性91精品| 卡通动漫国产精品| 久久亚洲精品视频| 久久久久久穴| 久久久噜噜噜久噜久久| 欧美在线国产| 欧美一区二区三区喷汁尤物| 欧美亚洲视频在线看网址| 亚洲欧美日韩精品久久奇米色影视| 一区二区三区四区五区精品| 日韩一区二区精品视频| 日韩视频免费在线| 亚洲理伦在线| 一区二区精品| 亚洲一区高清|